首页> 外文OA文献 >Architecture of the upgraded BCM1F Backend Electronics for Beam Conditions and Luminosity measurement - hardware and firmware
【2h】

Architecture of the upgraded BCM1F Backend Electronics for Beam Conditions and Luminosity measurement - hardware and firmware

机译:用于光束条件和光度测量的升级版BCM1F后端电子设备的体系结构-硬件和固件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. Data in the form of histograms is transmitted to the DAQ. The system architecture and the signal processing algorithms will be presented.SummaryThe Fast Beam Conditions Monitor (BCM1F) detector is a part of the CMS Beam Radiation Instrumentation and Luminosity Project (BRIL). The increased performance expected of the LHC with energy of up to 14 TeV, higher luminosity and 25 ns bunch spacing is a challenge for the detector systems and increase the importance of real-time beam monitoring at high rates. The BCM1F is designed to monitor the flux and timing of particles originating from the proton-proton interactions and machine-induced-background (MIB) particles using 24 single crystal CVD diamond sensors positioned at a distance of ±1.8 m from the interaction point. Signals from the detectors are shaped and amplified by a front-end pre-amplifier ASIC and transmitted through optical fibers.The BCM1F back-end electronics is designed to receive signals from the detector via 48 optical channels. The architecture of the system is based on MicroTCA technology. It assumes using 12 AMC cards with a single FMC connector for receiving signals from the detector, 2 AMCs for measurement of the Beam Pick-up Timing for Experiments (BPTX) signals and 2 AMCs for the slow control of the front-end electronics. For signals digitizing 12 FMC mezzanines with 4 channels, 8 bit ADCs at a sampling rate 1.25 GS/s are considered to be used. The mezzanines configured in 1 channel operating mode at 5 GS/s sampling rate can be used for the BPTX signals measurement. The slow control module will use 2 FMC mezzanines with 8 SFP/SFP+ cages.The firmware design must be capable of processing signals at very high input rates (270 MHz) without introducing any dead time. It will provide information about collisions, MIB and activation products. Samples will be processed in FPGAs on AMC carrier boards, put into histograms and sent to the BRIL data acquisition system. The data processing algorithm is being designed to be able to recognize signal peaks from the detector with a minimum time resolution of ~12 ns, which corresponds to the maximum overlap of two pulses that can be recognized as separate from the ASIC. The single pulse FWHM is 10 ns. Various methods of the amplitude and time measurement are being tested. Information about a peak occurrence will be stored in histograms total number of counts in time, and in amplitude. Additionally one orbit of RAW data is possible to be collected every Lumi Nibble (2^12 orbits) and sent to the DAQ, for efficiency studies. The data storage will consume most of the FPGA memory resources (up to 85pct) that hence the more complex algorithms can be used only for offline analysis.The structure of the system, data flow and considered algorithms will be presented along with the current status of the readout system development.
机译:CMS实验的束辐射仪器和光度项目由几个束监视系统组成。一种系统是升级后的快速光束状态监测器,它基于24颗单晶CVD金刚石,具有双垫金属化涂层和定制设计的读数。用于实时监控的信号被传输到计数室,在这里由新的后端电子设备接收并处理这些信号,这些后端电子设备旨在提取有关LHC碰撞,光束诱发的背景和激活产物的信息。直方图形式的数据被传输到DAQ。本文将介绍系统架构和信号处理算法。概述快速光束状态监测器(BCM1F)检测器是CMS光束辐射仪器和亮度项目(BRIL)的一部分。高达14 TeV的能量,更高的发光度和25 ns束间距的LHC有望提高性能,这对探测器系统来说是一个挑战,并提高了以高速率进行实时光束监控的重要性。 BCM1F旨在使用位于距相互作用点±1.8 m处的24个单晶CVD金刚石传感器来监视质子-质子相互作用和机器感应背景(MIB)颗粒产生的颗粒的通量和时间。来自探测器的信号通过前端前置放大器ASIC进行整形和放大,然后通过光纤传输。BCM1F后端电子设备旨在通过48个光学通道接收来自探测器的信号。该系统的体系结构基于MicroTCA技术。假定使用12个带有单个FMC连接器的AMC卡来接收来自检测器的信号,使用2个AMC来测量实验光束拾取定时(BPTX)信号,并使用2个AMC来缓慢控制前端电子设备。对于将4个通道的12个FMC夹层金属数字化的信号,可以考虑使用采样率为1.25 GS / s的8位ADC。在1通道操作模式下以5 GS / s采样率配置的夹甲用于BPTX信号测量。慢速控制模块将使用2个带有8个SFP / SFP +笼的FMC夹层。固件设计必须能够以非常高的输入速率(270 MHz)处理信号,而不会引入任何停滞时间。它将提供有关碰撞,MIB和激活产品的信息。样品将在AMC载板上的FPGA中进行处理,放入直方图中,然后发送到BRIL数据采集系统。数据处理算法被设计为能够以约12 ns的最小时间分辨率识别来自检测器的信号峰值,该时间分辨率对应于可以被识别为与ASIC分离的两个脉冲的最大重叠。单脉冲FWHM为10 ns。正在测试各种幅度和时间测量方法。有关峰出现的信息将存储在时间和振幅的直方图中。此外,每个Lumi Nibble(2 ^ 12轨道)可能会收集一个轨道的RAW数据,并将其发送到DAQ,以进行效率研究。数据存储将消耗大部分FPGA存储器资源(高达85pct),因此更复杂的算法只能用于离线分析。系统的结构,数据流和考虑的算法将与FPGA的当前状态一起显示。读出系统的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号